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Transient Response of  a Permeable Crack Normal  to a 
Piezoelectric-elastic Interface" Anti -plane Problem 
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In this paper, the anti-plane transient response of a central crack normal to the interface 

between a piezoelectric ceramics and two same elastic materials is considered. The assumed 

crack surfaces are permeable. By virtue of integral transform methods, the electroelastic mixed 

boundary problems are formulated as two set of dual integral equations, which, in turn, are 

reduced to a Fredholm integral equation of the second kind in the Laplace transform domain. 

Time domain solutions are obtained by inverting Laplace domain solutions using a numerical 

scheme. Numerical values on the quasi-static stress intensity factor and the dynamic energy 

release rate are presented to show the dependences upon the geometry, material combination, 

electromechanical coupling coefficient and electric field. 
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1. Introduction 

Piezoelectric materials generate an electric field 

when subjected to strain fields and undergo de- 

formation when an electric field is applied. This 

inherent electromechanical coupling is widely 

exploited in the design of many devices like trans- 

ducers, sensors and actuators. In addition, piezo- 

electric materials are a primary concern in the 

field of advanced lightweight structures where 

the smart structure technology is now emerging 

(Crawley, 1994). By bonding or merging piezo- 

electric members within a structure it is possible 

to control the structure behavior through elec- 

trically induced strain fields and, conversely, 

employ the strain-induced electric field as a feed- 
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back driver. The effective control of piezoelectric 

smart structures can be achieved by means of the 

optimal combination of structural and control 

elements, which allows using all the benefits of 

the electromechanical coupling. On the while, 

due to the brittle behavior of piezoelectric ma- 

terials, reliable service lifetime predictions de- 

mand a comprehensive understanding of the frac- 

ture process in the presence of electromechanical 

coupling. In many engineering applications, these 

piezoelectric structures may experience transient 

dynamic loads as well as steady harmonic loads. 

It is, therefore, of great importance to investigate 

the transient dynamic response of cracked piezo- 

electric structures. 

A finite crack in an infinite piezoelectric ma- 

terial under anti-plane electromechanical impact 

was investigated by Chert and coworkers (Chen 

and Yu, 1997 ;Chen  and Karihaloo, 1999) with 
an impermeable crack boundary condition. The 

same problem of an anti-plane shear wave in 

an infinite piezoelectric medium were considered 

by Chen and Yu (1998) with the impermeable 
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crack boundary condition, and Meguid and Wang 

(1998) with the permeable one, respectively. The 
impermeable and the permeable results for an 
infinite piezoelectric strip parallel to the crack 
under anti-plane shear impact loading were re- 
ported by Chen (1998) and Li and Fan (2002), 
respectively. Shin et al.(2001) presented an ec- 
centric permeable crack solution in an infinite 

piezoelectric strip parallel to the crack under 
anti-plane shear impact loading. Chen and 
Meguid (2000) studied a vertical crack problem 
in an infinite piezoelectric strip under anti-plane 

electromechanical impact load based on imper- 
meable crack model. Kwon and Lee (2001) 
presented transient dynamic solutions for a rec- 
tangular shaped piezoelectric material with both 
the permeable and the impermeable crack con- 
dition. Most recently, Kwon and Lee (2004) 

considered the dynamic response of an anti-plane 
crack on the basis of  the unified crack boundary 
condition in a functionally graded piezoelectric 
strip. 

The appropriate choice of electrical boundary 
conditions on the crack surface is still an open 
problem. Generally, there are two well-accepted 
electric boundary conditions, namely; the per- 
meable and impermeable ones. An impermeable 
boundary condition on the crack surface has been 
widely used in the previous works. Although this 
assumption can simplify some analysis and is 
shown to be valid to the problem of a nonslender 
hole, however, it may lead to erroneous results for 
crack problems. Particularly, since no opening 
displacement exists for an anti-plane problem, the 

crack surfaces can be in perfect contact. There- 
fore, the classical electric boundary conditions 
along the interface of dielectric materials (the 
continuity of the normal component of electric 
displacement and tangential component of  electric 
field), i.e. permeable crack model, are considered 
in the current study. 

In this paper, we consider the problem for a 
crack in a rectangular shaped piezoelectric block 
bonded between two same elastic blocks under 
the combined anti-plane mechanical shear and 
in-plane electrical transient loadings. By using 
integral transform techniques, the problem is 

reduced to a Fredholm integral equation of  the 

second kind in the Laplace transform domain, 
which are obtained from two pairs of dual in- 
tegral equations. Time domain solutions are ob- 
tained by inverting Laplace domain solutions 

using a numerical scheme. Though main pur- 
pose of  the present work is to seek the transient 
dynamic solution for a piezoelectric-elastic com- 

posite structure with classic electric boundary 
conditions, the quasi-static result is also discuss- 
ed in detail since the recent work (Kwon and 
Meguid, 2002) misleads the readers. Numerical 

results of the quasi-static stress intensity factor 
and the dynamic energy release rate are also 
displayed graphically to show the dependences 
upon the geometry, material combination, elec- 
tromechanical coupling coefficient and electric 
field. 

2. Formula t ion  of  the Problem 

Consider the problem of a piezoelectric com- 

posite block of  height 2h and width 2b0, which 
consists of the piezoelectric and elastic materials. 
A central through crack of  length 2a is located 
in the mid-plane of the piezoelectric block and 
the crack boundaries are parallel to the -axis, 
as shown in Fig. 1. Here Cartesian coordinates 
(x, y, z) are the principal axes of  the material 
symmetry while the z-axis is oriented in the 
poling direction of  the piezoelectric block. Anti-  

plane mechanical loading and in-plane electric 

"~H(t) 
® ® ® ® 

L_ 
2a x 

Doll( t )  

® 

Fig. 1 Piezoelectric-elastic composite block with a 
center crack (e): elastic material, (p): piezo- 
electric material 
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loading are suddenly exerted on the top and 

bottom surfaces of the composite block, r0, Do 

and H( t )  in Fig. 1 refer to the applied shear 

traction, the electric displacement and the Heavi- 

side unit step function, respectively. 

The dynamic ant i-plane electroelastic gover- 

ning equations in the absence of body forces 

and free charge can be written by the following 

forms, 

V2W= 1 ~ W  (1) 
C~ Ot z 

1 ~ w e  (2) 
Wwe= CZre Ot 2 

V~¢~=o (3) 

where w(x ,  y,  t ) ,  we(x, y, l) and ~b(x, y, l) 

are the mechanical displacements of the piezo- 

electric-elastic composite bock and the Bleustein 

function (Bleustein, 1968), respectively. Quanti- 

ties in two elastic blocks will subsequently be 

designated by subscripts e. And ~7 z=o~ /ax2+  a2/ 
Oy 2 represents the two-dimensional  Laplacian 

operator. Also 

Ex, Ey, are obtainable in terms of the following 

constitutive relations : 

r~=Zw, h+exs¢, k, r~ze=C44eWe, h (5) 

Dh=-d11¢, h, E k = - - ¢ ,  k (6) 

where comma denotes partial  differentiation with 

respect to k ( k = x ,  y). 
Owing to the symmetry in geometry and load- 

ing, in the following, it is sufficient to consider 

only the quarter-plane. As usual, the problem 

can be separated into two subproblems and 

solved by superposition. From the viewpoint of  

fracture mechanics, or practical interest is the 

dynamic singular electroelastic field due to the 

presence of the crack. Consequently, in what 

follows we focus our attention on the pertur- 

bation solution for a crack. Considering the ge- 

ometry and electromechanical loading, the elec- 

troelastic boundary conditions could be satisfied 

as follows : 

Dx(b, y, t)=0, (O~y<_h) (7) 

w(b, y, t )=we(b ,  y, t), (O~y<_h) (8) 

c ~ = g / ~ ;  ~ .  Cre=V p c '  

- -  ~ ' 1 2  • els 
z = c " ~ - ~  ; ¢ = ¢ - U H  w 

(4) 

in which Cr, Cre, ,u, C44e, p and Pe are the 
speed of the piezoelectrically stiffened bulk shear 

wave, the speed of the shear wave in elastic la- 

yers, the piezoelectrically stiffened elastic con- 

stant, the elastic shear modulus of the elastic 

material, the piezoelectric material density, and 

the elastic material density, respectively. In ad- 

dition to the above coefficients, c44, dn, els 

and ¢ are the elastic shear modulus measured 

in a constant electric field, the dielectric per- 

mittivity measured at a constant strain, the 

piezoelectric constant, and the electric potential, 

respectively. 
Once functions w, We and ~b are determined 

from given boundary conditions, then the com- 

ponents of ant i -plane shear stress, in-plane elec- 

tric displacement, Dx, Dy, and electric field, 

r= (b ,  y, t ) = r ~ e ( b ,  y, t ) ,  (O<y<h) (9) 

ryz(X, O, t ) = - r 0 H ( t ) ,  ( 0 < x < a )  (10) 

w(x,  O, t)=O, (a<x<<-b) (11) 

Dy(x, 0 +, t )=Dy(x ,  0-, t),  ( 0 < x < a )  ( lea)  

Ex(x, 0 +, t ) = Ex ( x ,  0-, t), ( 0 < x < a )  (12b) 

¢ (x ,  0, t ) = 0 ,  (a<x<-b) (13) 

3. Solution to the Problem 

In order to obtain the singular electroelastic 

field, it is necessary to assume that the composed 

materials are static at the initial time. Under 

such circumstances, it is easily shown from Eqs. 

(1 ) - - (3 )  that the out -of-plane  displacements 

w(x,  y, t),  We(X, y, t) and the Bleustein func- 
tion ¢ (x, y, t) in the Laplace transform domain 

with respect to time can take the forms (Kwon 

and Lee; 2000, 2001): 
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w*(x, y, p) 
2 oo cosh[r(h-y)] 

=~fo A~(s, p) cosh(Th) cos(sx) ds 
oo 

+ 5-2, B1 (n, p) cosh(ax) sin (fly~h) 
#l=0 

(14) 

¢*(x, y, p) 
cosh[s(h-y)] 

=2zfo®A2 (s, p) cosh(sh) -cos (sx) ds 
0 o  

+ ~B2(n, p)cosh(flx/h)sin(fly/h) 
#l=0 

(15) 

w* (x, y, p) 

= ~ C(n, p)cosh[Ae (bo-x)]sin(lTy/h) 
t i=O 

(16) 

where 

T=~/s2+ (p/CT) 2, fl= (2n+l) z /2  

a=,/(~'/h) ~+ (b/ C~) ~ 

a~=d (~/ h) 2 + (Pl Cr~) = 

(17) 

A~(s, p), Bj(n, p) ( /=1,  2) and C(n, 19) are the 
unknown functions to be determined from the 
given boundary conditions. Superscript * and p 
denote Laplace transform domain and Laplace 
transform parameter, respectively, defined by 

With the aid of constitutive equations, from Eqs. 
(5) and (6) it is not difficult to obtain the ex- 
pressions for the components of the stress, strain, 
electric displacement and the electric field in the 
Laplace transform domain in terms of A~(s, p), 
B3(n, p) and C(n,  p), j = l ,  2. For instance, we 
have : 

r~* (x, y, p) 

21z ~ cosh[7(h- y) ] sin(sx) ds 
=-~-foo sA~(s, p) cosh(rh) 

+ /~AB,(n ,  p)sinh(kx)sin(fly/h) 
rl=0 

cosh[s(h-y) ] sin(sx) ds 
2~S fo=sA~(s' P) cosh(sh) 

+ bl inh(flxlhl in(fly/h) 

(21) 

r~ (x, y, p) 
sinh[7(h-y) ] =-21~f=rA,(s, p) cos (sx)ds 

7r Jo cosh(rh) 

coshI x/cosIfly/h/ + 

sinhls(h-y) ] cos(sx) ds 2~S fo sA2(s, p) 
c0sh(sh) 

+ el,~ofl h B2(n, p)cosh(flxlh)cos (fly~h) 

(22) 

f* (p) = foo~f ( t) e-m dt (18) 

where the integral in Eq. (19) is taken over the 
Bromwich path. 

Furthermore, it follows from last relation of 
Eq. (4) that the electric potential ¢(x, y, t) in 
the Laplace transform domain is given by 

¢*(x, y, p) 

fo cosh[7(h-y) ] _ 2 e15 ~A,(s, p) cos(sx) ds 
z dn cosh (7'h) 

+ $115 n~=oB1 ( n, p) cosh (,h:) sin (fly~h) 

cosh Is (h-y) ] 
bl cosh(shl cos(sxl 

+ ~.Bz(n, P) cosh(flx/h)sin(fly/h) 
n = 0  

(20) 

r%(x, y, p) 

= - c,~ ~,AeC (n, p) sinh[ /~e( bo-x) ]sin(fly / h) 
n=O 

(23) 

r;e (X, y, p) 

=C~e~=o~C(n, P)cosh[A~(bo-x) ]cos(fly/h) 
(24) 

Dx' (x, y, p) 

_2du f ~ cosh[s(h-y) ] sin(sx) ds 
.1o sA2(s, p) cosh(sh) (25) 

- d n n ~  B2 (n, p)sinh (fix~h) sin (fly~h) 

D; (x, y, p) 
2dn f ~ A  , sinh[s(h-y)] cos(sx)ds 

- ~ Jo s~2ts, P) cosh(sh) (26) 

- dn ~ B2 (n, p)cosh(flx/h) cos (fly/h) 
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EZ(x, y, p) 

fo _2  et~ sAds, P) 
x & cosh(rh) 

o o  

els.~. ,tel ( n, p) sinh (/Ix) sin (/~y/h) 
a l l  tt=O 

2 ® cosh[s (h-y) ] sin(sx) ds +zfo sA~(s, P) cosh(sh) 

- ~ o ~  B~(n, p)sinh(l~x/h)sin(~y/h) 

cosh[r(h-y) ] cos (sx) ds 

(27) 

E,: (x, y, P) 
- fo s inh[r(h-y)  ] 2 e~ "fAds, P) cos(sx)ds 

z d,, cosh(rh) 

e,5 61~ Bl ( n ' d~-n ~o h p) cosh (/Ix) cos (fly~h) 

2 ~ sinh[s(h-y)] cos(sx)ds 
+ 2 fo sA~(s, p) cosh(sh) 

- ~oh fl-- B2 (n, p) cosh (fix/h) cos (fly~ h) 

(28) 

It can be easily shown that Eq. (16) is satisfied 
with the conditions of r~(b0, y, t) =0, ( 0 < y N  
h) and We(X, O, t)=0, (b~x~bo).  

Using the Fourier sine and cosine series pairs, 
Eqs. (7) ~ (9) yield the following relations 

Bl(n, p) 
4(fl/h) z . f® [sltsin(sb) -c.eq c0s(sb)] 

z~c.,r(n, p) Jo s2+,~ 2 
Ax(s, p)ds 

(29) 

B~(n, p) 
4 f~* s'sin(sb) 

- xhsinh($b/h).1o ~ 2  Az(s, p)ds 
(30) 

c(n, b) 
l 

- c0sh[,~e (b- b0)] { Bl(n, P)c0sh (Ab) (31) 

+4(fl/h) 2 f®cos(sb)A~(s, p) ds } 

where 

r(n, p) = p Asinh(Ab) +q cosh(Ab) (32) 
C44e 

q=)~tanh[A~(bo-b) ] (33) 

In the case of permeable crack surface condition, 

the following two pairs of dual integral equations 
are obtained from Eqs. (10 ) -  (13): 

- ~  sk s Al(s, p)+e~st~(sh)Az(s, 

+ ~ 4(fl/h)Zcosh(,k).('[sgsin(sb)-c.a7 c0s (sb)] At(s, p)ds 
11~o- ~ - ~  .~ SZ+,~ z (34) 

4(/~/h) . , c*'s.sin(sb)A2(s, p) 
+%Mff~b/ht c~h(~x/ht~ ~ ds: p, 

O<x<a 

foCAl(s, p)cos(sx)ds=O, a < x < b  (35) 

and 

o~ L eu~5 ~ p) J sin(sx) ds=O fo s I -7 -At ( s ,  p) +A2(s, (36) 

O<x<a 

fo~[ e,~ /,) ]cos (sx) i ~ Ax(s, p) + Az(s, ds=O 

a < x ~ b  
(37) 

From Eqs. (36) and (37), we can find the fol- 
lowing relation 

eLs A2(s, p ) = - ~ n  Al(S, P) (38) 

and let 

A (s, p)=c44A~(s, P) (39) 

The solution of the resulting dual integral equa- 
tions (34) and (35) can be attempted by using 
techniques outlined in Copson (1961). That is, if 
we choose A (s, p) given by 

r°~ra~ f',/-~S2* A(s,  P) =--Tp. to  ($, p)Jo(sa~)d~ (40) 

where ]o(sa~) stands for the zero order Bessel 
function of the first kind and f2*(~, p) is an 
auxiliary function. 

By substituting Eq. (40) into Eqs. (34) and 
(35), it is easily shown that Eq. (35) is autom- 
atically satisfied, and Eq. (34) becomes the fol- 
lowing Fredholm integral equation of the second 
kind : 

~*(~, p)+j0x 2 . ( ~ , r  p) [L,($, 7, P)-L2(~, V, P) 

+L3(8, r]) ] dr/=,/~- 
(41) 
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with the kernels, given by 

LI(~ ,  7, P) 
(42) 

= ~ f o ® S  I f  (s/a, p) -- 1] lo (s~) lo (szl) ds 

L2(~, ~, P) 
(43) 

= (1 + k  z) @~fl3h-Ze-a/$D( ~, p) Io (AS) Io(A~) 

L3($, 7/) 
(44) 

= k2 ~ ' / ~ o ~ r ~  I coth < ~ / g )  - 1] Io (#~) Io ( ~ )  

f (s/a, p) 
= ( l + k 2  ) r tanh ( r / I z )  k2tanh(s/~ ) 

S 

and 

(45) 

h=a/h,  b=a/b,  bo=a/bo (46a) 

F=~/ sZ + (pa/ Cr) z (46b) 

A = ~/(13Fz) z + (pa/Cr) 2 
(46c) 

A, = , / ( ~ / ~ ) 2 +  (pa/Cr,)z 

D(n, p)-/~]~[cg* (I + k 2 ) - Q / A ]  (46d) 
R(n,  p) 

Q=Aetanh[Ae ~ ]  (46e) 

R(n,  p)=cg4(l+k2)Asinh(A/b)  
+ Q cosh(A/b ' )  (46f) 

cg4 = c44e, k =,/  eZ~s/ c44d, (46g) 

10( ) represents the modified zero order Bessel 
function of the first kind. 

Equation (41) is the governing integral equa- 
tion for the present problem, which can be solved 
via some existing numerical schemes. 

Among the various types of electroacoustic sur- 
face waves, Bleustein-Gulyaev (B-G) waves rep- 
resent peculiar solutions for the dynamic pro- 
blem in piezoelectric materials, which have no 
counterparts in elastic media. They consist in 
shear horizontal electromechanical perturbations 
localized near the boundary surface of a piezo- 
electric solid and polarized perpendicularly to the 
sagittal plane, along a six-fold axis of material 
symmetry (Romeo, 2001). This shear horizontal 
mode surface wave velocity (Bleustein, 1968) is 

defined as Vs-- Cry/1 - ke 4 with ke = ~/ezsI (&ltz). 
The parameter k in Eq. (46g) is a measure of 
the strength of the electromechanical coupling 
(ke) in the piezoelectric solid and will be re- 
ferred hereafter as the electromechanical coupling 
coefficient (EMCC). 

ke k 
k - - ~  ; ke-- (47) 

41--k~ 

3. Intensity Factors 

The dynamic stress and electric field can be 
obtained by determining the inverse of the La- 
place transform of the stress and electric dis- 
placement expressions. From the point of view of 
fracture mechanics, however, only the singular 
stress near the crack tip will be derived here. 
The integral expression for the Laplace transform 
of the stress and electric displacement can be 
obtained by substituting Eq. (40) into Eqs. (22) 

and (26). The portion o f A  (s, P) that contributes 
to the singular behavior is found from the inte- 
gration by part of Eq. (40) in the form : 

_ r0zra £2* (1, p) J1 (as) +... (48) A (s, p) - - 2 ~ p -  

where J,(as) denotes the first-order Bessel func- 
tion of the first kind. 

From the above result, the singular parts of 
the stresses and the electric displacements in the 
neighborhood of the crack tip can be expressed 
a s  

Kr(t)  Kr( t)  
r~= ~ r x r  s i n ( O ) ,  ryz = ~ cos(  O ) (49) 

Dx = - K°(t) KS(t) 
24T~r-s in(°) ,  D , - - ~  cos (20 ) (50) 

where 

/ ll 

Kr(t)  and KS(t) are the dynamic stress inten- 
sity factor, and the dynamic electric displacement 
intensity factor, respectively. For a given form of 
the loading functions, two field intensity factors 
are determined as 
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K r ( t )  = l i m V 2 7 r ( x - a )  r~,(x, 0, t) 
x~a+ 

= ro ~(~a-M (t) 
(52) 

K ~ (t)  = l i m  ~/2n" (x  - a) Dy  (x,  0, t) 

_ e ~  K r (t)  
C44 

(53) 

where 

_= 1 f_22*(1, P) ePtd p (54) M ( t )  276J~  p 

The function 22"(1, p) can be calculated from 
Eq. (41). To obtain the dynamic energy release 
rate, we assume that under applied loads the 
crack tip advances along the crack plane from 
x = a  to x = a + ~ a  (c~a<<a). The dynamic energy 
release rate during this process is identical to the 
mechanical strain energy release rate introduced 
by Park and Sun (1995a, 1995b), which is of the 
form : 

_ r02a'a 2 [ K r ( t ) ]  2 (55) 
G ( t ) - - ~  M ( t ) -  2 c ,  

It is readily seen that the dependence of the 
dynamic energy release rate on the dynamic 
stress intensity factor is the same in the form as 
that for purely elastic materials. Also the dy- 
namic intensities of stress and electric displace- 
ment as well as the dynamic energy release rate 
are dependent upon only the resultant stress dis- 
tribution generated by mechanical deformation 
and the electromechanical interaction (Kwon and 
Lee, 2001). 

5 .  C a s e  S t u d i e s  

The solutions provided in the previous section 
can now be extended to several special cases; as 
detailed below. 

(Case 1): Quasi-static solution. The correspond- 
ing static solution is obtained by applying 
Tauberian's final value theorem (Sneddon, 1972) 
as follows ; 

~(~e)-}_f01Q(T]) IK~(~e, 72)_/.~(~, 72)]d~=]~ (56) 

where 

lim 22* (~, p) = ~ ( ~ )  (57) 
P~0 

K1 ( ~, 72) = ~ fo=S [fst (s/ a) - 1110 (s~) ]o (s72) ds (5g) 

k2 ]I0(~i$)/0(B/~) (59) 
sinh(/~h/b) 

At  ( s /  a) =tanh(s / /~)  (60) 

This is not in agreement with the result of Kwon 
and Meguid (2002) since most contents of them 
are derived incorrectly. 

(Case 2): b'---, 0(b  --~ co). In the case, the width 
of the piezoelectricblock is much greater than 
the crack length. The respective dynamic and 
static expressions are found to : 

22'(~, P) +f0122'(72, p)LI(#, 7, P )d~7=f (  (62) 

22(~) +f01~(z / )Kl (~  e, z2)d~y=fff  (63) 

This case implies that the crack is parallel to the 
edges of an infinite piezoelectric strip, and Eqs. 
(62) and (63) are in agreement with previous 
results of Li and Fan (2002) and Shindo et al. 
(1997), respectively. 

(Case 3) : b0---~0(b0---~ co). If the surrounding 
elastic material is an infinite strip containing a 
central crack parallel to the strip edges, the 
expressions are reduced to 

£2' (~, p)+i~Y2*(~, p)[L~(~, 72, p) -L4(~, 72, P) (64) 
+L,(~, ~) ]&=~ 

for the dynamic impact loading with the follow- 
ing kernel 

L4(~, 7, P) 
(65) 

= (1 + k 2) f~=o~rflh2e-a'~D~ (n, p) Io (A~) Io (A~) 
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D~ ( n, p) = l~fi[ cg4 (1 + k 2) - Q,/ A ] 
R~(n, P) 

Rz(s, P) = c ~  (1 + k z) F sinh(/ ' / /)) 
(66) + Q2 cosh (F/b-) (77) 

Qx=A,, R,(n, p) 
= c~'4 ( 1 + k 2) A sinh (A/b)  + Qt cosh (A/b)  (67) 

and 

s2(8) +f0's2(7) [K~(8, 7) (68) 
-Ka (~, r/) ~ dT= f ~  

for the corresponding static loading case with 

kZ ]Io(~/~8) Io(~/~)(69) 
sin~(~/~) 

cg, (1 + k z) -1 
E(n) = c:~ (1 +k2)sinh($h/b) +cosh(fl/~/b-) (70) 

(Case 4): /~--*0(h---~c~). Consider the case 
when the height of the piezoelectric composite 
block is much greater than the crack length. In 
this case, assuming tirn(a ' /~):ds; /3/~-s, the 
dynamic and static solutions of a piezoelectric 
composite strip with a central crack perpendicular 
to piezoelectric-elastic interface may be obtained 
from Eqs. (41) and (56), respectively, in the 
forms, 

.Q* (~, p)+Jo ~.(2'(7," P)[Ls(8, r/, p)-L~(~, r/, p) 

+L7($, 7)]d~=,/~ 

Ls (8, 7, P) 

= ~  f ~ s [ A ( s / a ,  p) - 1]lo(SS) lo(S~) ds 
dO 

L6(8, V, P) 

= (1 + k z) @fo~Se-rt6D2 (s, D) lo (F~) Io (1"71) ds 

L 7 ( ~ ,  7) 

= k 2 ~  f ~ [ c o t h ( s / b )  - 1~ Io (s~ e) Io(s7) ds 
dO 

f s ( s /a ,  p) = (1 + k Z ) ~ - k  2 
S 

s [ cg, ( 1 + k 2) - Q2/Fl 

and 

Q2=F~tanhIF ~ b-b°  1 
~ o  J 

(78) 

Fe---- dS 2 + (Pa/ CTe) z (79) 

~(8)  + f0~(V) /G(8 ,  7) d7=,/Y~ 

2 

• ~ L S l n n [ s / o  ) 

(80) 

(81) 
1 

- (1 + E)F (s)/Io(sS)Io(sq) ds 
3 

c~(l + k 2) -tanh( s b~bo ] 
\ bbo / 

F ( s ) -  - - (82) 
c~(I + k 2) sinh(s/b) +tanh(s bfbo/c0sh(s//~) 

\ bbo/ 

(Case 5): f i -~0(h - -*~) ,  b0--~0(b0-~oo). 
Consider now the influence of the height and 
width of the composite solid. For these condi- 
tions, the expressions for the transient and static 
solutions are given by Eqs. (71) -- (82) : 

1 * 

n*(~, p) +f0 B (7/, p)[Ls(~, 7, P) -Ls(~, ~/, P) (83) 
+L7(8, ~ ) ] d ~ = ~  

L8(8, r/, p) 
(84) 

(71) = ( l + k Z ) ( ~  fo~Se-rJbD3(s, P)Io(F~)Io(F~)ds 

s Ecg, (1 + k  ~) - Q3/Fl  
D~(s, p ) =  R3(s,  P) (85) 

(72) 
R3(s,  p) = cg~ (1 + k s) V s inh ( V / ~ )  

(86) 
+Q3 cosh(F/b-), Q3=Fe 

(73) for transient loading case, and 

~(~)  + f0 '~ (7 ) -~ ($ ,  7) d~=,/Y~ (87) 
(74) 

K~(~,~):~'¢~I se L - -  - 
sinh(s/b) (88) 

(75) -(1 +~) G(s)]I0(s~)]o(S~)ds 

cg4 ( l + k 2) --1 
(76) G(s) = cga( l+k2)s inh(s /~)  +cosh(s/b-) (89) D2 (s, p) = R2 (s , / , )  
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for the static loading, respectively. In particular, 

if we impose the piezoelectric constant e l s=0  

(or k = 0 ) ,  the results given in Sih and Chen 

(1981) will be recovered from the expression of 

Ks(~, z/). The result of Kwon and Meguid (2002) 

is, however, not consistent with that of Sih and 

Chen (1981). 

(Case 6) : b = b0. Finally, for the case when there 

is only a piezoelectric block without surrounding 

elastic materials, the corresponding static and 

transient expressions are exactly reduced to those 

of Kwon and Lee (2000, 2001). 

6. Numerical  
Results  and Discuss ion 

In this section, numerical results for both the 

static and the transient loadings are presented 

to show the influence of the geometry, material 

combinations and EMCC. Beginning from the 

this section, the quasi-static stress intensity fac- 

tor will be expressed as SIF, the dynamic stress 

intensity factor will be expressed as DSIF,  the 

quasi-static energy release rate as ERR and the 

dynamic energy release rate as DERR for conve- 

nience. In an attempt to obtain numerical DSIF 

and DERR, the obtained Fredholm integral equa- 

tions are computed numerically by Gaussian 

quadrature integration technique. Also to carry 

out the numerical inversion of the Laplace trans- 

form, Miller and Guy's method (1966) is chosen 

because that it has been widely used in the field 

of fracture mechanics with a reasonable accuracy. 

The application of this method to Eq. (54) allows 

M(t) to  be expanded, for a suitable choice of 

parameters N and c~, as 

N 

M(Ta) ~ ~,qnPnE2 exp ( - ~ T a )  - l J  (90) 
r t=0 

where 

T~=Crt /a  (91) 

Pn(x)--  ( - 1 )  n dn 2n~¢ ! dx~[(1--x)  n( l+x)"]  (92) 

and where the coefficients qn are evaluated itera- 

tively from the knowledge of  Q* at discrete 

points, by means of the equalities 

~*[l, (l+n)~] 
l+n 

= ~. ~(n-l)...[n-(k-2) ][n-(k-1) ] (93) 

,~1 (n+l)(n+2)...(n+k+l) qk, n=0, 1, ... 

The accuracy of numerical DSIF and DERR 

values are affected by the numerical inversion 

parameters such as N and 8, and Gauss Le- 

gendre and Laguerre integrating points. We use 

quasi-static SIF and ERR values here as a cri- 

terion to choose the value of N and 8. 

Usually, the concern of  practical interest in 

engineering applications is the case when both 

the surrounding elastic materials of a piezoelec- 

tric layer are thick enough (b0---~ co) and h ~  c~. 

It corresponds to the Case 5 in section 5. 

6 . 1  Q u a s i - s t a t i c  l o a d i n g  

The variation of the dimensionless SIF, K r / r 0  

~ - ( l i m  K r (t) ----Kr), against the dimensionless 

crack length, a/b, for four different ratios of 

c~(=c44/C44e) is plotted in Fig. 2. When the 

crack is small in comparison with the layer 

height, K r / ' c o ~  remains nearly constant and 

not sensitive changes in c~. As a/b increases 

20 
' I ' I ' I ' I ' 

/ 

k=1,0 / 
// / 

/ / 
1,5 C~*= 10.0/'" / 

/ / ' "  

. J  

o.o i I 
0.0 0.2 0.4 0.6 0.8 1 0 

alb 
F i g .  2 Quasi-static stress intensity factor as a func- 

tion K r / ~ o ~  of a/b 
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or the distance between the crack tip and inter- 

face decreases, the SIF K r / ~ c ~ a  can either 

increase or decrease depending on c~. Figure 3 

shows that all curves do not intersect through 

the point Kr/rovr~d=l  and c ~ = l  as in a purely 

elastic problem (Sih and Chen, 1981) since the 

EMCC k#:0 in this consideration. 

6 . 2  T r a n s i e n t  l o a d i n g  

The variation of the dimensionless DERR, 

. , - - ' "  

k = l . 0  . . . . ,  . . . . , ' " "  . 

t , , -" '"  0.6 . . . . .  

1.0 ~ f ~'" - - 0.3 - 

'} 
0.5 

0.0 
0.0 1.0 2.0 3.0 4.0 5.0 

C4~' 

F i g .  3 Quasi-static stress intensity factor as a func- 

tion K r / r o ~  of c~ 

Iw 

1.5 

1.0 

0.0 
0.0 

' I ' I ' 

k=l.O, p/po=l.0, a/b=0.2 

" .  ~ - :  ....................... % . ' . : ? . o : !  . . . . . . . . . . . . .  
" - . , , . :  . . . . . . . . . . .  i ~0  . . . . .  - 

01 

F , I 
4.0 8.0 

Ta 
12.0 

Fig. 4 Dynamic energy release rate G = 2 c ,  G ( t ) /  
dTra versus Ta with the variation of c& 

G', versus the dimensionless time, Ta, for three 

different ratios of c& is plotted in Fig. 4. Here 

G - - 2 c ,  G ( t ) / ~ x a .  It is seen form Fig. 4 that 

the curves exhibit apparent transient features 

similar to the ones for purely elastic media. Na- 

mely, the DERR rises quite rapidly in a small 

time, reaching a peak value, then drops slowly, 

and finally approaches to the corresponding 

static value. The normalized DERR G decreases 

when the modulus of the surrounding elastic 

material increases with reference to that of the 

2.0 

1.5 

1,0 

0.5 

0.0 
0.0 

2.0 

1.5 

I ~  1 .0  

0.5 

F i g .  5 

0.0 
0~0 

' I ' I ' 

k=l.0, ~po=l.0 

i 
:" 

/ 

4.0 8.0 12.0 

Td 
(a) c~,= 10.0 

' I ' [ ' 

k=l.o, p/p,=1 .o 

t / " ' - - .  . . . .  - . . . . . . . . . . . .  

4.0 8,0 120 

T~ 
(b) cg4 =0,1 

Dynamic energy release rate G = 2 c u G ( t ) /  
~xa versus Ta with the variation of a/b 
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2,0 

1.5 

Io ~o 

05 

O0 
O0 

' I ' I ' 

k=0.0 c,4"=0.t,, a/b=0.2, p¢9~=1.0 

i /  20 

I/// 
4,0 80  ~2.0 

Td 

F i g .  6 Dynamic energy release rate G=2c ,  G( t ) /  
~a-a versus Ta with the variation of EMCC k 

piezoelectric layer material. The influence of 

a/b on G is shown in Fig. 5. The larger inertia 

effect on the DERR prevails at the initial stage 

with the decrease of the crack length, which is 

independent of the material combination ratio 

c4~. The effect of the EMCC k on the DERR 

is displayed in Fig. 6. It is observed that for 

larger EMCC, it takes longer time for DERR 

to reach a peak value. It is also found that the 

values of DERR are smaller with the increase of 

EMCC. 

7 .  C o n c l u s i o n s  

In this article, both the transient and the 

quasi-static responses of a cracked piezoelectric 

composite block with the permeable crack condi- 

tion under electromechanical loads have been 

investigated. Using the integral transform tech- 

nique, the associated mixed boundary value pro- 

blem is reduced to a Fredholm integral equa- 

tion of the second kind by introducing an auxil- 

iary function. Then the electromechanical field 

intensity factors and the dynamic energy release 
rate are given explicitly in terms of the auxiliary 

function. The dynamic intensity factors and the 

dynamic energy release rate are dependent on 
only the resultant stress distribution generated by 

mechanical deformation and electromechanical 

interaction. It is remarked via numerical analyses 

that the stiffness ratio (cg4) and the electrome- 

mechanical coupling coefficient (EMCC) are key 

parameters in the behaviors of a piezoelectric 

elastic composite block. 
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